Travaux pratiques : configuration de Frame Relay et de sousinterfaces

Topologie

Table d'adressage

Périphérique	Interface	Adresse IPv4 et IPv6	Passerelle par défaut
R1	G0/0	192.168.1.1/24 2001:DB8:ACAD:A::1/64 FE80::1 link-local	N/A
	S0/0/0 (DCE)	10.1.1.1/30 2001:DB8:ACAD:B::1/64 FE80::1 link-local	N/A
FR	S0/0/0	N/A	N/A
	S0/0/1 (DCE)	N/A	N/A
R3	G0/0	192.168.3.1/24 2001:DB8:ACAD:C::3/64 FE80::3 link-local	N/A
	S0/0/1	10.1.1.2/30 2001:DB8:ACAD:B::3/64 FE80::3 link-local	N/A
PC-A	NIC	192.168.1.3/24 2001:DB8:ACAD:A::A/64	192.168.1.1 FE80::1
PC-C	NIC	192.168.3.3/24 2001:DB8:ACAD:C::C/64	192.168.3.1 FE80::3

Objectifs

Partie 1 : création du réseau et configuration des paramètres de base du périphérique

Partie 2 : configuration d'un commutateur Frame Relay

- Partie 3 : configuration du protocole Frame Relay de base
- Partie 4 : dépannage du protocole Frame Relay

Partie 5 : configuration d'une sous-interface Frame Relay

Contexte/scénario

Frame Relay est un protocole de réseau étendu (WAN) qui intervient dans les couches physique et liaison de données du modèle de référence OSI. À l'inverse des lignes louées, Frame Relay ne nécessite qu'un seul circuit d'accès au fournisseur Frame Relay pour communiquer avec plusieurs sites connectés au même fournisseur.

Frame Relay était l'un des protocoles WAN le plus largement utilisé, du fait de son faible coût par rapport aux lignes dédiées. De plus, la configuration de l'équipement des utilisateurs dans un réseau Frame Relay est assez simple. Avec l'arrivée de services haut débit tels que le DSL, le modem câble, GigaMAN Ethernet (service Ethernet point à point sur fibre optique), le VPN et la commutation MPLS, Frame Relay a perdu de son intérêt comme solution d'accès au WAN. Cependant, la solution Frame Relay est toujours utilisée pour la connexion WAN dans certaines régions rurales qui n'ont pas accès à ces solutions.

Au cours de cet exercice, vous allez configurer l'encapsulation Frame Relay sur des liaisons série. Vous allez également configurer un routeur pour simuler un commutateur Frame Relay. Vous allez également revoir les

normes Cisco et les normes ouvertes qui s'appliquent à Frame Relay. Vous allez également configurer des sous-interfaces Frame Relay point à point.

Remarque : les routeurs utilisés lors des travaux pratiques CCNA sont des routeurs à services intégrés (ISR) Cisco 1941 équipés de Cisco IOS version 15.2(4)M3 (image universalk9). D'autres routeurs et versions de Cisco IOS peuvent être utilisés. Selon le modèle et la version de Cisco IOS, les commandes disponibles et le résultat produit peuvent varier de ceux indiqués dans les travaux pratiques. Reportez-vous au tableau récapitulatif des interfaces de routeur à la fin de ces travaux pratiques pour obtenir les identifiants d'interface corrects.

Remarque : assurez-vous que les routeurs ont été réinitialisés et ne possèdent aucune configuration initiale. En cas de doute, contactez votre instructeur.

Ressources requises

- 3 routeurs (Cisco 1941 équipés de Cisco IOS version 15.2(4)M3 image universelle ou similaire)
- 2 PC (Windows 7, Vista ou XP, équipés d'un programme d'émulation de terminal tel que Tera Term)
- Câbles de console pour configurer les périphériques Cisco IOS via les ports de console
- Câbles Ethernet et série conformément à la topologie

Partie 1 : Création du réseau et configuration des paramètres de base du périphérique

Dans cette première partie, vous allez configurer la topologie du réseau et les paramètres de base sur les PC hôte et les routeurs.

Étape 1 : Câblez le réseau conformément à la topologie.

Étape 2 : Initialisez et redémarrez les routeurs, le cas échéant.

Étape 3 : Configurez les paramètres de base pour chaque routeur.

- a. Désactivez la recherche DNS.
- b. Configurez les noms des périphériques conformément à la topologie.
- c. Attribuez class comme mot de passe du mode d'exécution privilégié.
- d. Attribuez cisco en tant que mots de passe de console et vty, puis activez la connexion.
- e. Configurez logging synchronous pour la ligne de console.
- f. Chiffrez tous les mots de passe en clair.
- g. Configurez une bannière MOTD pour avertir les utilisateurs que tout accès non autorisé est interdit.
- h. Définissez la fréquence d'horloge sur toutes les interfaces série DCE à 128000.
- i. Configurez les adresses IPv4 et IPv6 indiquées dans la table d'adressage pour toutes les interfaces. N'activez pas les interfaces série maintenant.
- j. Copiez la configuration en cours en tant que configuration de démarrage.

Étape 4 : Configurez les hôtes PC.

Reportez-vous à la table d'adressage pour les informations d'adresses d'hôte de PC.

Étape 5 : Testez la connectivité.

À ce stade, les PC ne pourront pas s'envoyer de requêtes ping, mais ils devraient pouvoir en envoyer vers leur passerelle par défaut. Testez les deux protocoles, IPv4 et IPv6. Vérifiez et dépannez, le cas échéant.

Partie 2 : Configuration d'un commutateur Frame Relay

Dans la partie 2, vous allez configurer un commutateur Frame Relay. Vous allez créer des circuits virtuels permanents (PVC) et affecter des identificateurs de connexion de liaison de données (DLCI). Cette configuration crée deux PVC : un de R1 à R3 (DLCI 103) et un de R3 à R1 (DLCI 301).

Étape 1 : Configurez le routeur FR en tant que commutateur Frame Relay.

La commande **frame-relay switching** active la commutation Frame Relay globale sur le routeur, lui permettant ainsi de transférer des trames en fonction de leur DLCI entrant plutôt que de leur adresse IP.

FR(config) # frame-relay switching

Étape 2 : Changez l'encapsulation d'interface sur S0/0/0.

Changez le type d'encapsulation d'interface en Frame Relay. Tout comme les protocoles HDLC et PPP, Frame Relay est un protocole de couche liaison de données qui spécifie le tramage du trafic de couche 2.

```
FR(config) # interface s0/0/0
FR(config-if) # encapsulation frame-relay
```

Étape 3 : Changez le type d'interface en DCE.

Le changement du type d'interface en DCE indique au routeur d'envoyer des signaux de maintien de connexion LMI et permet l'application des instructions de routage Frame Relay.

Remarque : les types d'interfaces Frame Relay ne doivent pas nécessairement correspondre aux types des interfaces sous-jacentes. Une interface série ETTD physique peut fonctionner comme interface DCE Frame Relay, et une interface DCE physique peut fonctionner comme interface DCE Frame Relay logique.

```
FR(config)# interface s0/0/0
FR(config-if)# frame-relay intf-type dce
```

Étape 4 : Configurez le DLCI.

Configurez le routeur pour qu'il transfère le trafic entrant de l'interface S0/0/0 avec le DLCI 103 vers l'interface S0/0/1 avec le DLCI de sortie 301.

FR(config-if) # frame-relay route 103 interface s0/0/1 301
FR(config-if) # no shutdown

Étape 5 : Configurez le protocole Frame Relay sur S0/0/1.

```
FR(config)# interface s0/0/1
FR(config-if)# encapsulation frame-relay
FR(config-if)# frame-relay intf-type dce
FR(config-if)# frame-relay route 301 interface s0/0/0 103
FR(config-if)# no shutdown
```

Étape 6 : Vérifiez la configuration de Frame Relay.

a. Utilisez la commande **show frame-relay pvc** pour vérifier si le protocole Frame Relay est correctement configuré.

FR# show frame-relay pvc

PVC Statistics for interface Serial0/0/0 (Frame Relay DCE)

	Active	Inactive	Deleted	Static
Local	0	0	0	0
Switched	0	1	0	0
Unused	0	0	0	0

DLCI = 103, DLCI USAGE = SWITCHED, PVC STATUS = INACTIVE, INTERFACE = Serial0/0/0

input pkts O	output pkts 0	in bytes O
out bytes 0	dropped pkts 0	in pkts dropped 0
out pkts dropped 0	out bytes droppe	ed O
in FECN pkts 0	in BECN pkts 0	out FECN pkts 0
out BECN pkts 0	in DE pkts 0	out DE pkts O
out bcast pkts 0	out bcast bytes 0	
30 second input rate 0 b:	its/sec, 0 packets/sec	
30 second output rate 0 k	pits/sec, 0 packets/sec	
switched pkts 0		
Detailed packet drop cour	nters:	
no out intf 0	out intf down 0	no out PVC 0
in PVC down 0	out PVC down 0	pkt too big O
shaping Q full 0	pkt above DE 0	policing drop 0
connected to interface Se	erial0/0/1 301	

pvc create time 00:00:53, last time pvc status changed 00:00:53

PVC Statistics for interface Serial0/0/1 (Frame Relay DCE)

	Active	Inactive	Deleted	Static
Local	0	0	0	0
Switched	0	1	0	0
Unused	0	0	0	0

DLCI = 301, DLCI USAGE = SWITCHED, PVC STATUS = INACTIVE, INTERFACE = Serial0/0/1

input pkts 0	output pkts 0	in bytes O
out bytes 0	dropped pkts 0	in pkts dropped 0
out pkts dropped 0	out bytes droppe	ed O
in FECN pkts 0	in BECN pkts 0	out FECN pkts 0
out BECN pkts 0	in DE pkts 0	out DE pkts 0
out bcast pkts 0	out bcast bytes 0	
30 second input rate 0 b	ts/sec, 0 packets/sec	
30 second output rate 0 k	pits/sec, 0 packets/sec	
switched pkts 0		
Detailed packet drop cour	nters:	
no out intf 0	out intf down 0	no out PVC 0
in PVC down 0	out PVC down 0	pkt too big O
shaping Q full 0	pkt above DE 0	policing drop 0

connected to interface Serial0/0/0 103

pvc create time 00:00:16, last time pvc status changed 00:00:16

b. Exécutez la commande **show frame-relay route**. Il s'agit de la route de couche 2 que le trafic Frame Relay emprunte sur le réseau. (Ne la confondez pas avec le routage IP de couche 3.)

FR# show frame-relay route

Input Intf	Input Dlci	Output Intf	Output Dlci	Status
Serial0/0/0	103	Serial0/0/1	301	inactive
Serial0/0/1	301	Serial0/0/0	103	inactive

Partie 3 : Configuration du protocole Frame Relay de base

Dans la Partie 3, vous allez configurer Frame Relay sur les routeurs R1 et R3. Une fois Frame Relay configuré, vous allez activer le protocole de routage EIGRP afin de fournir une connectivité de bout en bout.

Étape 1 : Configurez R1 pour le protocole Frame Relay.

Le protocole ARP inverse permet aux extrémités d'une liaison Frame Relay de se découvrir de façon dynamique. Il offre également une méthode dynamique de mappage des adresses IP sur les DLCI. Bien que le protocole ARP inverse soit utile, il n'est pas toujours fiable. La meilleure pratique est de mapper les adresses IP de façon statique et de désactiver le protocole ARP inverse.

a. Changez l'encapsulation d'interface de S0/0/0 en Frame Relay.

```
R1(config) # interface s0/0/0
```

R1(config-if) # encapsulation frame-relay

b. Utilisez la commande **no frame-relay inverse-arp** pour désactiver le protocole ARP inverse.

```
R1(config) # interface s0/0/0
```

```
R1(config-if) # no frame-relay inverse-arp
```

c. Utilisez la commande frame-relay map pour mapper une adresse IP à un DLCI de façon statique. En plus du mappage de l'IP sur un DLCI, le logiciel Cisco IOS permet de mapper plusieurs autres adresses de protocole de couche 3. Dans la commande qui suit, le mot-clé broadcast envoie tout le trafic diffusion ou multidiffusion destiné à cette liaison au DLCI. La plupart des protocoles de routage exigent le mot-clé broadcast pour pouvoir fonctionner correctement sur Frame Relay. Vous pouvez utiliser le mot-clé broadcast sur plusieurs DLCI de la même interface. Le trafic est répliqué sur tous les circuits virtuels permanents.

Remarque : le mappage Frame Relay IPv6 sur une adresse globale de monodiffusion ne comprend pas le mot-clé **broadcast**. Toutefois, le mot-clé **broadcast** est utilisé dans le mappage de l'adresse link-local. Les protocoles de routage IPv6 utilisent des adresses link-local pour les mises à jour du routage de multidiffusion ; par conséquent, seul le mappage des adresses link-local nécessite le mot-clé **broadcast** pour transférer des paquets de multidiffusion.

```
R1(config)# interface s0/0/0
R1(config-if)# frame-relay map ip 10.1.1.2 103 broadcast
R1(config-if)# frame-relay map ipv6 2001:db8:acad:b::3 103
R1(config-if)# frame-relay map ipv6 fe80::3 103 broadcast
```

d. Pour que le routeur puisse envoyer une requête ping à sa propre interface, le DLCI doit être créé pour correspondre à l'interface locale.

```
R1(config)# interface s0/0/0
R1(config-if)# frame-relay map ip 10.1.1.1 103
R1(config-if)# frame-relay map ipv6 2001:db8:acad:b::1 103
```

e. Utilisez la commande no shutdown pour activer S0/0/0.

```
R1(config-if) # no shutdown
```

Étape 2 : Configurez R3 pour le protocole Frame Relay.

```
R3(config)# interface s0/0/1
R3(config-if)# encapsulation frame-relay
R3(config-if)# no frame-relay inverse-arp
R3(config-if)# frame-relay map ip 10.1.1.1 301 broadcast
R3(config-if)# frame-relay map ipv6 2001:db8:acad:b::1 301
R3(config-if)# frame-relay map ipv6 fe80::1 301 broadcast
R3(config-if)# frame-relay map ip 10.1.1.2 301
R3(config-if)# frame-relay map ipv6 2001:db8:acad:b::3 301
R3(config-if)# frame-relay map ipv6 2001:db8:acad:b::3 301
```

Pourquoi utiliser la commande no shutdown après la commande no frame-relay inverse-arp?

Étape 3 : Vérifiez si le protocole Frame Relay est actif.

a. Vous devez maintenant être capable d'envoyer une requête ping de R3 à R1. Il peut se passer quelques secondes avant que le PVC soit actif après l'ouverture des interfaces.

```
R1# ping 10.1.1.2
```

Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 28/30/40 ms R1**# ping 2001:db8:acad:b::3** Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:B::3, timeout is 2 seconds: !!!!!

- Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms
- b. Envoyez une requête ping de R1 à R3.

```
R3# ping 10.1.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms
R3# ping 2001:db8:acad:b::1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:B::1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 24/26/28 ms
```

c. Exécutez la commande **show frame-relay pvc** pour voir les informations d'état PVC sur R1 et R3.

R1# show frame-relay pvc

PVC Statistics for interface Serial0/0/0 (Frame Relay DTE)

	Active	Inactive	Deleted	Static
Local	1	0	0	0
Switched	0	0	0	0
Unused	0	0	0	0

DLCI = 103, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/0

input pkts 22 output pkts 154 in bytes 2240 out bytes 10860 dropped pkts 0 in pkts dropped 0 out pkts dropped 0 out bytes dropped 0 in FECN pkts 0 in BECN pkts 0 out FECN pkts 0 out BECN pkts 0 in DE pkts 0 out DE pkts 0 out bcast pkts 134 out bcast bytes 8780 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec pvc create time 01:59:40, last time pvc status changed 01:55:14

R3# show frame-relay pvc

PVC Statistics for interface Serial0/0/1 (Frame Relay DTE)

	Active	Inactive	Deleted	Static
Local	1	0	0	0
Switched	0	0	0	0
Unused	0	0	0	0

DLCI = 301, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/1

input pkts 158	output pkts 22	in bytes 11156
out bytes 2240	dropped pkts 0	in pkts dropped 0
out pkts dropped 0	out bytes droppe	ed O
in FECN pkts 0	in BECN pkts 0	out FECN pkts 0
out BECN pkts 0	in DE pkts 0	out DE pkts 0
out bcast pkts 2	out bcast bytes 160	
5 minute input rate 0 bit	s/sec, 0 packets/sec	
5 minute output rate 0 bi	ts/sec, 0 packets/sec	
pvc create time 01:57:20,	last time pvc status cha	anged 01:56:19

d. Exécutez la commande **show frame-relay route** sur FR pour vérifier l'état des instructions de mappage Frame Relay.

FR# show frame-relay route

Input Intf	Input Dlci	Output Intf	Output Dlci	Status
Serial0/0/0	103	Serial0/0/1	301	<mark>active</mark>
Serial0/0/1	301	Serial0/0/0	103	<mark>active</mark>

e. Exécutez la commande show frame-relay map sur R1 et R3 pour afficher un résumé des mappages statiques et dynamiques des adresses de couche 3 sur les DLCI. Comme le protocole ARP inverse a été désactivé, seuls des mappages statiques sont présents.

R1# show frame-relay map

Serial0/0/0	(up): ipv6 FE80::3 dlci 103(0x67,0x1870), static,
	broadcast,
	CISCO, status defined, active
Serial0/0/0	(up): ipv6 2001:DB8:ACAD:B::1 dlci 103(0x67,0x1870), static,
	CISCO, status defined, active
Serial0/0/0	(up): ip 10.1.1.1 dlci 103(0x67,0x1870), static,
	CISCO, status defined, active
Serial0/0/0	(up): ipv6 2001:DB8:ACAD:B::3 dlci 103(0x67,0x1870), static,
	CISCO, status defined, active
Serial0/0/0	(up): ip 10.1.1.2 dlci 103(0x67,0x1870), static,
	broadcast,
	CISCO, status defined, active

R3# show frame-relay map

Serial0/0/1	(up): ip	76 FE80::1 dlci 301(0x12D,0x48D0), static,
	broadca	ast,
	CISCO,	status defined, active
Serial0/0/1	(up): ip	76 2001:DB8:ACAD:B::3 dlci 301(0x12D,0x48D0), static,
	CISCO,	status defined, active
Serial0/0/1	(up): ip	10.1.1.2 dlci 301(0x12D,0x48D0), static,
	CISCO,	status defined, active
Serial0/0/1	(up): ip	76 2001:DB8:ACAD:B::1 dlci 301(0x12D,0x48D0), static,
	CISCO,	status defined, active
Serial0/0/1	(up): ip	10.1.1.1 dlci 301(0x12D,0x48D0), static,
	broadca	ast,
	CISCO,	status defined, active

Remarque : le routeur FR fonctionne comme un périphérique de couche 2, il n'est donc pas nécessaire de mapper des adresses de couche 3 sur des DLCI de couche 2.

Étape 4 : Configurez le routage EIGRP sur R1 et R3.

- a. Activez le routage IPv6 sur R1 et R3.
- b. À l'aide d'AS 1, activez le protocole EIGRP pour IPv4 et IPv6 sur R1 et R3 pour tous les réseaux. Définissez l'ID de routeur R1 sur 1.1.1.1 et R3 sur 3.3.3.3.

Étape 5 : Vérifiez la connectivité de bout en bout.

Envoyez une requête ping de PC-C à PC-A. Si les requêtes n'ont pas réussi, effectuez un dépannage jusqu'à ce que vous puissiez établir la connectivité de bout en bout.

Remarque : il peut être nécessaire de désactiver le pare-feu du PC pour que les requêtes ping puissent aboutir.

Partie 4 : Dépannage du protocole Frame Relay

Dans la partie 4, vous allez interrompre la connexion Frame Relay établie auparavant et utiliser des outils pour dépanner Frame Relay. Il existe un certain nombre d'outils pour le dépannage des problèmes de connectivité Frame Relay.

Étape 1 : Dépannez l'interface de gestion locale (LMI).

a. Exécutez la commande debug frame-relay Imi sur R1. Le résultat donne des informations détaillées sur toutes les données LMI. Les messages de maintien de connexion sont envoyés toutes les 10 secondes par défaut. Vous devrez donc patienter avant de voir le résultat. Ce résultat montre un paquet LMI sortant portant le numéro de séquence 50. Le dernier message LMI reçu de FR portait le numéro de séquence 49. Le résultat montre aussi un paquet LMI entrant de FR vers R1 portant le numéro de séquence 50. Le bulci sur cette liaison, et il est actif.

R1# debug frame-relay lmi

```
Frame Relay LMI debugging is on
Displaying all Frame Relay LMI data
R1#
*Jun 26 18:28:45.922: Serial0/0/0(out): StEnq, myseq 50, yourseen 49, DTE up
*Jun 26 18:28:45.922: datagramstart = 0xC318D54, datagramsize = 13
*Jun 26 18:28:45.922: FR encap = 0xFCF10309
*Jun 26 18:28:45.922: 00 75 01 01 01 03 02 32 31
*Jun 26 18:28:45.922: Serial0/0/0(in): Status, myseq 50, pak size 13
*Jun 26 18:28:45.922: RT IE 1, length 1, type 1
*Jun 26 18:28:45.922: KA IE 3, length 2, yourseq 50, myseq 50
*Jun 26 18:28:45.922: PVC IE 0x7 , length 0x6 , dlci 103 , status 0x2 , bw 0
```

b. Exécutez la commande undebug all pour arrêter le débogage.

Remarque : cette commande peut être abrégée en **u all**, ce qui peut être intéressant lorsque l'écran est encombré d'informations de débogage.

R1**# undebug all** All possible debugging has been turned off

Étape 2 : Supprimez le mappage de trame IPv4 de R1.

a. Exécutez la commande no frame-relay map pour supprimer le mappage de trame IPv4 sur R1.

```
R1(config) # interface s0/0/0
```

R1(config-if) # no frame-relay map ip 10.1.1.2 103 broadcast

b. Exécutez la commande debug ip icmp sur R1.

R1**# debug ip icmp** ICMP packet debugging is on

c. Envoyez une requête ping de R1 à R3. Les requêtes ping ne doivent pas réussir. Cependant, les messages de débogage sur R1 montrent que les paquets ICMP de R3 arrivent jusqu'à R1.

Remarque : vous devriez voir des messages de console indiquant l'état fluctuant de la contiguïté EIGRP. Cet état est parfois appelé oscillation.

R3# ping 10.1.1.1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:

. Success rate is 0 percent (0/5)R1# *Jun 26 20:12:35.693: ICMP: echo reply sent, src 10.1.1.1, dst 10.1.1.2, topology BASE, dscp 0 topoid 0 R1# *Jun 26 20:12:37.689: ICMP: echo reply sent, src 10.1.1.1, dst 10.1.1.2, topology BASE, dscp 0 topoid 0 R1# *Jun 26 20:12:39.689: ICMP: echo reply sent, src 10.1.1.1, dst 10.1.1.2, topology BASE, dscp 0 topoid 0 R1# *Jun 26 20:12:41.689: ICMP: echo reply sent, src 10.1.1.1, dst 10.1.1.2, topology BASE, dscp 0 topoid 0 R1# *Jun 26 20:12:43.689: ICMP: echo reply sent, src 10.1.1.1, dst 10.1.1.2, topology BASE, dscp 0 topoid 0

Pourquoi les requêtes ping échouent-elles ?

 Exécutez la commande show frame-relay map sur R1. Le mappage IPv4 de R3 ne figure pas dans la liste.

- e. Exécutez la commande undebug all pour arrêter le débogage sur R1.
 - R1# undebug all

All possible debugging has been turned off

f. Réappliquez la commande frame-relay map ip à S0/0/0 sur R1, mais sans utiliser le mot-clé broadcast.

R1(config)# interface s0/0/0
R1(config-if)# frame-relay map ip 10.1.1.2 103

g. Envoyez une requête ping de R1 à R3. Les requêtes ping doivent réussir, mais la contiguïté EIGRP continue d'osciller. Il peut s'écouler quelques minutes entre chaque message, à cause des minuteurs EIGRP.

```
R3# ping 10.1.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms
```

```
R1 (config-if) #
*Jun 26 20:25:10.871: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.1.1.2 (Serial0/0/0)
is down: Interface PEER-TERMINATION received
*Jun 26 20:28:13.673: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.1.1.2 (Serial0/0/0)
is up: new adjacency
R1 (config-if) #
*Jun 26 20:31:18.185: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.1.1.2 (Serial0/0/0)
is down: retry limit exceeded
R1 (config-if) #
*Jun 26 20:32:00.977: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.1.1.2 (Serial0/0/0)
is up: new adjacency
R1 (config-if) #
*Jun 26 20:35:05.489: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.1.1.2 (Serial0/0/0)
is down: retry limit exceeded
```

Pourquoi la contiguïté EIGRP continue-t-elle d'osciller ?

h. Remplacez l'instruction de mappage Frame Relay et ajoutez le mot-clé broadcast.

R1(config-if)# frame-relay map ip 10.1.1.2 103 broadcast

 Vérifiez que toute la table de routage est restaurée, et que vous disposez d'une connectivité de bout en bout.

Étape 3 : Changez le type d'encapsulation Frame Relay.

Le logiciel Cisco IOS prend en charge deux types d'encapsulation Frame Relay : l'encapsulation Cisco par défaut et l'encapsulation normalisée IETF.

a. Changez l'encapsulation Frame Relay sur S0/0/1 sur R3 en IETF.

```
R3(config)# interface s0/0/1
R3(config-if)# encapsulation frame-relay ietf
```

b. Exécutez la commande show interfaces s0/0/1 sur R3 et FR. Même si l'encapsulation est différente sur chaque interface, la liaison reste active. Ceci est dû au fait que les routeurs Cisco comprennent les deux types de trames entrantes. Cependant, si vous utilisez des routeurs de différentes marques et que vous utilisez le protocole Frame Relay, la norme IETF doit être utilisée.

```
R3# show interfaces s0/0/1
```

```
Serial0/0/1 is up, line protocol is up
Hardware is WIC MBRD Serial
Internet address is 10.1.1.2/30
MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation FRAME-RELAY IETF, loopback not set
Keepalive set (10 sec)
LMI enq sent 1898, LMI stat recvd 1900, LMI upd recvd 0, DTE LMI up
<output omitted>
```

FR# show interfaces s0/0/1

```
Serial0/0/1 is up, line protocol is up
```

```
Hardware is WIC MBRD Serial
```

MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation FRAME-RELAY, loopback not set Keepalive set (10 sec) LMI eng sent 0, LMI stat recvd 0, LMI upd recvd 0

c. Rétablissez l'encapsulation Frame Relay de R3 sur Cisco (valeur par défaut).

R3(config) # interface s0/0/1

R3(config-if) # encapsulation frame-relay

Étape 4 : Changez le type LMI.

a. Exécutez la commande frame-relay Imi-type ansi sur l'interface S0/0/1 de R3.

R3(config-if) # frame-relay lmi-type ansi

b. Après au moins 60 secondes, exécutez la commande show interfaces s0/0/1 sur R3. Une fois les 60 secondes écoulées, l'état de l'interface passe à activé, puis désactivé, car R3 attend un LMI ANSI alors que FR envoie un LMI Cisco.

```
R3# show interfaces s0/0/1
```

```
Serial0/0/1 is up, line protocol is down
Hardware is WIC MBRD Serial
Internet address is 10.1.1.2/30
MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation FRAME-RELAY, loopback not set
Keepalive set (10 sec)
LMI enq sent 2157, LMI stat recvd 2136, LMI upd recvd 0, DTE LMI down
LMI enq recvd 0, LMI stat sent 0, LMI upd sent 0
LMI DLCI 0 LMI type is ANSI Annex D frame relay DTE segmentation inactive
FR SVC disabled, LAPF state down
Broadcast queue 0/64, broadcasts sent/dropped 733/0, interface broadcast
<output omitted>
```

c. Sur R3, exécutez la commande show frame-relay lmi pour voir les informations LMI, y compris le type LMI, le nombre d'expirations et le temps écoulé depuis la dernière mise à jour complète.

```
R3# show frame-relay lmi
```

LÌ	II Statistics for interface	Serial0/0/1 (Frame	Relay DTE) <mark>LMI TYPE = ANSI</mark>
	Invalid Unnumbered info 0	Invalid	Prot Disc 0
	Invalid dummy Call Ref 0	Invalid	Msg Type 0
	Invalid Status Message 0	Invalid	Lock Shift 0
	Invalid Information ID 0	Invalid	Report IE Len 0
	Invalid Report Request 0	Invalid	Keep IE Len O
	Num Status Enq. Sent 2158	Num Stat	tus msgs Rcvd 2136
	Num Update Status Rcvd 0	Num Stat	tus Timeouts 23
	Last Full Status Reg 00:00	:05 Last Ful	ll Status Rcvd 00:04:35

d. Sur R3, exécutez la commande debug frame-relay Imi. Les paquets LMI ne s'affichent plus par paire. Alors que tous les messages LMI sortants sont enregistrés, aucun message entrant ne s'affiche, car R3 attend un LMI ANSI alors que FR envoie un LMI Cisco.

R3# debug frame-relay lmi

```
Frame Relay LMI debugging is on
Displaying all Frame Relay LMI data
R3#
*Jun 26 21:49:10.829: Serial0/0/1(out): StEnq, myseq 104, yourseen 0, DTE down
*Jun 26 21:49:10.829: datagramstart = 0xC313554, datagramsize = 14
*Jun 26 21:49:10.829: FR encap = 0x00010308
*Jun 26 21:49:10.829: 00 75 95 01 01 00 03 02 68 00
*Jun 26 21:49:10.829:
R3#
*Jun 26 21:49:20.829: Serial0/0/1(out): StEnq, myseq 105, yourseen 0, DTE down
*Jun 26 21:49:20.829: datagramstart = 0xC317554, datagramsize = 14
*Jun 26 21:49:20.829: FR encap = 0x00010308
*Jun 26 21:49:20.829: FR encap = 0x00010308
*Jun 26 21:49:20.829: O0 75 95 01 01 00 03 02 69 00
*Jun 26 21:49:20.829: 00 75 95 01 01 00 03 02 69 00
*Jun 26 21:49:20.829:
```

e. Rétablissez le type LMI sur Cisco pour R3. Notez que les messages de débogage changent après l'exécution de cette commande. Le numéro de séquence LMI repart à 1. R3 commence à comprendre les messages LMI de FR. Une fois que R3 et FR ont réussi à échanger des messages LMI, l'état de l'interface passe à activé.

```
R3(config) # interface s0/0/1
R3(config-if) # frame-relay lmi-type cisco
R3(config-if)#
*Jun 26 21:51:20.829: Serial0/0/1(out): StEnq, myseq 117, yourseen 0, DTE down
*Jun 26 21:51:20.829: datagramstart = 0xC31F254, datagramsize = 14
*Jun 26 21:51:20.829: FR encap = 0x00010308
*Jun 26 21:51:20.829: 00 75 95 01 01 00 03 02 75 00
*Jun 26 21:51:20.829:
R3(config-if)#
*Jun 26 21:51:30.829: Serial0/0/1(out): StEng, myseg 1, yourseen 0, DTE down
*Jun 26 21:51:30.829: datagramstart = 0xC31F3D4, datagramsize = 13
*Jun 26 21:51:30.829: FR encap = 0xFCF10309
*Jun 26 21:51:30.829: 00 75 01 01 00 03 02 01 00
*Jun 26 21:51:30.829:
*Jun 26 21:51:30.829: <a href="https://www.secarcheat.com">Secarcheat.com</a> (in the secarcheat.com</a> (in the secarcheat.com</
*Jun 26 21:51:30.829: RT IE 1, length 1, type 0
*Jun 26 21:51:30.829: KA IE 3, length 2, yourseq 1 , myseq 1
*Jun 26 21:51:30.829: PVC IE 0x7 , length 0x6 , dlci 301, stat
R3(config-if)#us 0x2 , bw 0
R3(config-if)#
*Jun 26 21:51:40.829: Serial0/0/1(out): StEnq, myseq 2, yourseen 1, DTE down
*Jun 26 21:51:40.829: datagramstart = 0xC313B54, datagramsize = 13
*Jun 26 21:51:40.829: FR encap = 0xFCF10309
*Jun 26 21:51:40.829: 00 75 01 01 01 03 02 02 01
*Jun 26 21:51:40.829:
*Jun 26 21:51:40.829: Serial0/0/1(in): Status, myseq 2, pak size 21
*Jun 26 21:51:40.829: RT IE 1, length 1, type 0
*Jun 26 21:51:40.829: KA IE 3, length 2, yourseq 2 , myseq 2
*Jun 26 21:51:40.829: PVC IE 0x7 , length 0x6 , dlci 301, stat
R3(config-if) #us 0x2 , bw 0
```

```
*Jun 26 21:51:51.829: %LINEPROTO-5-UPDOWN: Line protocol on Interface
Serial0/0/1, changed state to up
R3(config-if)#
```

f. Exécutez la commande undebug all pour arrêter le débogage.

```
R3# undebug all
```

All possible debugging has been turned off

Partie 5 : Configuration d'une sous-interface Frame Relay

Le protocole Frame Relay prend en charge deux types de sous-interfaces : point à point et point à multipoint. Les sous-interfaces point à multipoint prennent en charge les topologies d'accès multiple de non-diffusion. Par exemple, la topologie en étoile utilise une sous-interface point à multipoint. Dans la partie 5, vous allez créer une sous-interface point à point.

Étape 1 : Sur le routeur FR, créez de nouveaux PVC entre R1 et R3.

```
FR(config)# interface s0/0/0
FR(config-if)# frame-relay route 113 interface s0/0/1 311
FR(config-if)# interface s0/0/1
FR(config-if)# frame-relay route 311 interface s0/0/0 113
```

Étape 2 : Créez et configurez une sous-interface point à point sur R1 et R3.

Remarque : l'encapsulation Frame Relay doit être spécifiée sur l'interface physique avant de pouvoir créer les sous-interfaces.

a. Créez la sous-interface 113 comme interface point à point sur R1.

```
R1(config)# interface s0/0/0.113 point-to-point
R1(config-subif)# ip address 10.1.1.5 255.255.255.252
R1(config-subif)# ipv6 address 2001:db8:acad:d::1/64
R1(config-subif)# ipv6 address fe80::1 link-local
R1(config-subif)# frame-relay interface-dlci 113
R1(config-fr-dlci)#
```

b. Créez la sous-interface 311 comme sous-interface point à point sur R3.

```
R3(config)# interface s0/0/1.311 point-to-point
R3(config-subif)# ip address 10.1.1.6 255.255.252
R3(config-subif)# ipv6 address 2001:db8:acad:d::3/64
R3(config-subif)# ipv6 address fe80::3 link-local
R3(config-subif)# frame-relay interface-dlci 311
R3(config-fr-dlci)#
```

c. Vérifiez la connectivité.

```
R1# ping 10.1.1.6
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.6, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms
R1# ping 2001:db8:acad:d::3
Type escape sequence to abort.
```

Sending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:D::3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms
R3# ping 10.1.1.5
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms
R3# ping 2001:db8:acad:d::1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:D::1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms

d. Exécutez la commande show frame-relay pvc sur R1 et R3 pour voir les informations d'état PVC.

R1# show frame-relay pvc

PVC Statistics for interface Serial0/0/0 (Frame Relay DTE)

	Active	Inactive	Deleted	Static
Local	2	0	0	0
Switched	0	0	0	0
Unused	0	0	0	0

DLCI = 103, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/0

input pkts 1170	output pkts 1408	in bytes 92566		
out bytes 105327	dropped pkts 0	in pkts dropped 0		
out pkts dropped 0	out bytes dropped 0			
in FECN pkts 0	in BECN pkts 0	out FECN pkts 0		
out BECN pkts 0	in DE pkts 0	out DE pkts 0		
out bcast pkts 1160 out bcast bytes 89034				
5 minute input rate 0 bits/sec, 0 packets/sec				
5 minute output rate 0 bits/sec, 0 packets/sec				
pvc create time 07:53:13, last time pvc status changed 00:35:58				

DLCI = 113, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/0.113

input pkts 86 output pkts 494 in bytes 20916 out bytes 45208 dropped pkts 0 in pkts dropped 0 out pkts dropped 0 out bytes dropped 0 in BECN pkts 0 out FECN pkts 0 in FECN pkts 0 out BECN pkts 0 in DE pkts O out DE pkts O out bcast pkts 464 out bcast bytes 42088 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec pvc create time 00:35:58, last time pvc status changed 00:35:58

R3# show frame-relay pvc

PVC Statistics for interface Serial0/0/1 (Frame Relay DTE) Active Inactive Deleted Static 0 2 0 0 Local Switched Unused 0 0 0 0 0 0 0 0 DLCI = 301, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/1 input pkts 1406 output pkts 1176 in bytes 105143 out bytes 93110 dropped pkts 0 in pkts dropped 0 out pkts dropped 0 out bytes dropped 0 in BECN pkts 0 out FECN pkts 0 in FECN pkts 0 out BECN pkts 0 in DE pkts O out DE pkts O out bcast pkts 1038 out bcast bytes 80878 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec pvc create time 07:51:07, last time pvc status changed 00:37:16 DLCI = 311, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0/1.311 input pkts 513 output pkts 114 in bytes 47072 out bytes 30360 dropped pkts 0 in pkts dropped 0 out pkts dropped 0 out bytes dropped 0 in BECN pkts 0 out FECN pkts 0 in FECN pkts 0 out BECN pkts 0 in DE pkts O out DE pkts O out bcast pkts 74 out bcast bytes 26200 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec pvc create time 01:11:06, last time pvc status changed 00:37:16

e. Exécutez la commande **show frame-relay route** sur FR pour vérifier l'état des instructions de mappage Frame Relay.

FR# show frame-relay route

Input Intf	Input Dlci	Output Intf	Output Dlci	Status
Serial0/0/0	103	Serial0/0/1	301	active
Serial0/0/0	113	Serial0/0/1	311	active
Serial0/0/1	301	Serial0/0/0	103	active
Serial0/0/1	311	Serial0/0/0	113	active

f. Exécutez la commande **show frame-relay map** sur R1 et R3 pour vérifier l'état des instructions de mappage Frame Relay.

```
CISCO, status defined, active
Serial0/0/0 (up): ipv6 2001:DB8:ACAD:B::1 dlci 103(0x67,0x1870), static,
             CISCO, status defined, active
Serial0/0/0 (up): ip 10.1.1.1 dlci 103(0x67,0x1870), static,
             CISCO, status defined, active
Serial0/0/0 (up): ipv6 2001:DB8:ACAD:B::3 dlci 103(0x67,0x1870), static,
             CISCO, status defined, active
Serial0/0/0.113 (up): point-to-point dlci, dlci 113(0x71,0x1C10), broadcast
          status defined, active
R3# show frame-relay map
Serial0/0/1 (up): ipv6 FE80::1 dlci 301(0x12D,0x48D0), static,
             broadcast,
             CISCO, status defined, active
Serial0/0/1 (up): ipv6 2001:DB8:ACAD:B::3 dlci 301(0x12D,0x48D0), static,
             CISCO, status defined, active
Serial0/0/1 (up): ip 10.1.1.2 dlci 301(0x12D,0x48D0), static,
             CISCO, status defined, active
Serial0/0/1 (up): ipv6 2001:DB8:ACAD:B::1 dlci 301(0x12D,0x48D0), static,
             CISCO, status defined, active
Serial0/0/1 (up): ip 10.1.1.1 dlci 301(0x12D,0x48D0), static,
             broadcast,
              CISCO, status defined, active
Serial0/0/1.311 (up): point-to-point dlci, dlci 311(0x137,0x4C70), broadcast
```

status defined, active

Remarques générales

1. Qu'est-ce qu'un PVC et comment est-il utilisé ?

2. Quel est l'objectif du DLCI ?

- 3. Quelle est la fonction de l'interface de gestion locale (LMI, Local Management Interface) utilisée dans les réseaux Frame Relay ?
- 4. Pourquoi utiliser des sous-interfaces avec Frame Relay ?

Résumé des interfaces de routeur				
Modèle du routeur	Interface Ethernet 1	Interface Ethernet 2	Interface série 1	Interface série 2
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)

Tableau récapitulatif des interfaces de routeur

Remarque : pour savoir comment le routeur est configuré, observez les interfaces afin d'identifier le type de routeur ainsi que le nombre d'interfaces qu'il comporte. Il n'est pas possible de répertorier de façon exhaustive toutes les combinaisons de configurations pour chaque type de routeur. Ce tableau inclut les identifiants des combinaisons possibles des interfaces Ethernet et série dans le périphérique. Ce tableau ne comporte aucun autre type d'interface, même si un routeur particulier peut en contenir un. L'exemple de l'interface RNIS BRI peut illustrer ceci. La chaîne de caractères entre parenthèses est l'abréviation normalisée qui permet de représenter l'interface dans les commandes de Cisco IOS.